
Mapping Gaussian Process Priors
to Bayesian Neural Networks

Daniel Flam-Shepherd
University of Toronto

danielfs@utstat.utoronto.ca

James Requeima
University of Cambridge
jrr4l@cam.ac.ukl

David Duvenaud
University of Toronto

duvenaud@cs.toronto.edu

1 Introduction and Motivation

What defines a reasonable prior to use when forming and training Bayesian models? Recent work,
such as [1] seek to improve priors over network parameters, by applying a horseshoe prior over
preactivations of a Bayesian neural network (BNN) to effectively turn off weights that do not explain
the data. Our goal with this work is to consider priors in function space as well.

It is difficult to incorporate meaningful prior information about functions to be modeled by BNNs
since priors are generally specified over the network parameters. Often, normal distributions are
placed over the weights for convenience and are interpreted as a bias toward less complex functions via
smaller weights. Gaussian processes, on the other hand, have a elegant mechanism for incorporating
prior beliefs about the underlying function - specifying the mean and covariance functions. However,
Gaussian Processes have scalability limitations making Bayesian neural networks a more practical
model in large data settings. In our work, we present an approach to specify a more principled prior
for Bayesian Neural Networks that can leverage the well studied kernel design techniques from
Gaussian process regression.

We consider matching the prior of a Bayesian neural network pBNN(f |φ) to the prior of a Gaussian
process pGP(f) by minimizing their approximate KL divergence via some data distribution of interest
X ∼ p(X). We minimize this divergence with respect to the initial variational parameters φ of
the proposal distribution q(w|φ). These variational parameters φ∗ = {µ∗φ, logσ∗φ} yield a prior
on the BNN weights p(w|φ∗) = N (w|µ∗φ,σ∗φ). Then, variational inference allows us to perform
approximate inference in our BNN using this more principled prior. We describe the implementation
of both steps and demonstrate its success in the following sections.

x y w

φ∗

(a) BNN

x f y

(b) GP

Figure 1: (a) and (b) display the graphical models of a BNN and GP.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 Mapping a GP prior to BNN prior

In this section we describe the procedure used to minimize the KL divergence of the BNN prior distri-
bution over functions pBNN(f |φ) and the GP prior distribution over functions pGP(f) ≡ GP(f |0,K)
where K is the Grahm matrix of the kernel or covariance function chosen.

K(φ) = KL[pBNN(f |φ) | pGP(f)] (1)

=

∫
pBNN(f |φ) log

[
pBNN(f |φ)
pGP(f)

]
df (2)

= −H[pBNN(f |φ)]− EpBNN(f |φ)[log pGP(f)] (3)

We define our first stochastic optimization objective LX(φ) by approximating the KL divergence
between these infinite dimensional distributions by taking expectations over some data distribution
p(X), explicitly : LX(φ) ≡ EX∼p(X)[K(φ)] . This allows us to prioritize where in the input space
we want pBNN(f |φ) ∼ pGP(f). We have :

LX(φ) = −EX∼p(X)H[pBNN(f(X)|φ)]− EX∼p(X)EpBNN(f(X)|φ)[log pGP(f(X))] (4)

Both terms in equation (4) are intractable and force us to use some approximation. Since we are able
to compute pGP(f(X)) analytically, we can compute a Monte Carlo Estimate of the second term in
(4):

EX∼p(X)EpBNN(f |φ)[log pGP(f)] ≈
1

S

S∑
s=1

E[log pGP(f
(s)(X))]

where f (s)(X) ∼ pBNN(f |X). For the entropy term in (4) we propose two estimation methods.

2.1 Estimate of entropy term using moment matching

The first estimate we make involves the approximation that the prior distribution over functions for the
BNN is a multivariate Gaussian distribution that takes form pBNN(f(X)|φ) ∼ N (f |µf(X), Σf(X)).
In this case, the entropy term can be evaluated analytically over p(X) as H[pBNN(f(X)|φ)] =
1
2 log |2πeΣf(X)| where we use the sample mean and covariance for µf(X), Σf(X) over p(X). This
is a reasonable approximation because the overall goal in this work is push pBNN(f |φ) ≈ pGP(f) over
p(X) and as pBNN(f |φ)→ pGP(f) it will get more accurate. With this, the objective is

LX(φ) ≈ −1

2
log |Σf(X)| −

1

S

S∑
s=1

EX∼p(X)[log pGP(f
(s)(X))] (5)

We optimize this until convergence φ∗ = argmin
φ
LX(φ). The details are in Algorithm 1.

Algorithm 1 Optimization of the prior of the Bayesian neural net

1: Initialize φ = {µφ, logσφ}
2: while φ not converged do
3: ε(s) ∼ p(ε) = N (0, I) . sample prior noise
4: w(s) ← t(φ, ε) = µφ + σφ � ε(s) . sample S weights w ∼ q(w|φ)
5: X← (x1, . . . ,xn) ∼ p(x1, . . . ,xn) . sample data
6: f (s)(X)← f(X,w(s)) . sample S functions f ∼ pBNN(f |φ)
7: gφ ← ∇φLX(φ) . compute gradients of the objective
8: φ← adam(φ,gφ) . update the parameters
9: Return φ∗

The next section describes a formulation that allows to make an alternate approximation of the entropy
term by considering the equivalent problem in observation space.

2

2.2 Estimate of entropy term by projecting into observation space

Consider the equivalent problem in observation space by adding noise ε ∼ N (0, σ2I) to our functions
y = f + ε so that we are minimizing the KL divergence of p(y|φ) : the BNN prior distribution over
noisy observations to the GP prior distribution over noisy observations pGP(y).

K(φ) = KL[p(y|φ) | pGP(y)] = −H[p(y|φ)]− Ep(y|φ)[log pGP(y)] (6)

Now we use Monte Carlo estimates of both H[p(y|φ)] and Ep(y|φ)[log pGP(y|θ)] :

K(φ) ≈ 1

S

S∑
s=1

log p(y(s)|φ)− 1

S

S∑
s=1

log pGP(y
(s)) (7)

where we are sampling S times : y(s) ∼ p(y|φ). To estimate log p(y(s)|φ) we do approximate infer-
ence on an intermediate proposal distribution r(w|λ), where λ = {µλ, logσλ} are its variational
parameters to be optimized. We then estimate log p(y(s)|φ) using its ELBO LDs

(λ), optimized on
data Ds = {X,y(s)}. This is similar to Hierarchical variational models by [2].

log p(y(s)|φ) ≥ LDs
(λ) ≡ Er(w|λ) [log p(Ds|w) + log p(w)− log r(w|λ)] (8)

where log p(Ds|w) =
∑
i logN (y

(s)
i |f(xi,w), σ2I) defines a parametric model. Once again we

take expectations p(X) to define the objective LX(φ,λ) ≡ EX∼p(X)[K(φ)] by approximating the
KL divergence between these infinite dimensional distributions. We obtain :

LX(φ,λ) = min
φ

1

S

S∑
s=1

max
λ
LDs

(λ)− 1

S

S∑
s=1

EX∼p(X)[log pGP(y
(s)(X))] (9)

We optimize (9) till convergence, this is described in the Algorithm 2.

Algorithm 2 Mapping a GP prior to a BNN prior in observation space

1: Initialize φ = {µφ, logσφ}
2: while φ not converged do
3: ε(s) ∼ p(ε) = N (0, I) . sample prior noise
4: w(s) ← t(φ, ε(s)) = µφ + σφε

(s) . sample S weights w ∼ q(w|φ)
5: X← (x1, . . . ,xn) ∼ p(x1, . . . ,xn)} . sample from some data distribution
6: f (s) ← f(X,w(s)) . sample S functions from the BNN
7: y(s) ← f (s)(X) + ε . sample observations
8: for each Ds = {X,y(s)} hold φ constant and do
9: λ∗s ← argmax

λ
LDs

(λ) . do approximate inference

10: log p(y(s)← LDs(λ
∗
s) . estimate the marginal log likelihood

11: gφ ← ∇φLX(φ,λ) . compute gradients of the kl
12: φ← adam(φ,gφ) . update the parameters
13: Return φ∗

2.3 Early Stopping

Another rough approximation of (4) is to ignore the entropy term H[pBNN(f |φ)] altogether, as it
merely acts as a regularization term, so we avoid collapsing to a single high density value. To address
this issue, we found that early stopping works well in practice and yielded our best results. The
results presented in the following section use early stopping and no entropy term.

3

3 Experiments with different kernels and activation functions

We experiment with mapping GP priors (GPPs) with various covariance functions k(x, x′) to BNN
priors that have various activation functions a(x). We sample on order 103 data from a uniform
data distribution X ∼ p(X) about a symmetric interval (-10, 10). We use automatic differentiation
software : autograd [3, 4] to compute gradients of our objective, which is optimized using adam [5].
In all experiments we work directly in function space and found that reasonable results can be found
even when ignoring the entropy term H[p(f)] altogether. Experiments are conducted on simple 1 or
2 layer neural networks. The prior proposal distribution on the BNN weights is a diagonal Gaussian
in all cases. In the following subsections, plots have color scheme:

f(X) ∼ pGP(f(X)), f(X) ∼ pBNN(f(X)|φ∗), f(X) ∼ pBNN(f(X))

3.1 Linear and Softplus Experiments

k(x, x′) = xx′

a(x) = x

(a)

k(x, x′) = e−(x−x
′)2/50

a(x) = log(1 + ex)

(b)

Figure 2: In (a) we map a GPP with a linear kernel to a linear model (Bayesian Linear regression),
the optimized prior samples extend from the origin just as the GPP samples do. In (b) we map a GP
prior with a RBF kernel to a BNN prior with a softplus activation function, the optimized samples
have been mapped near the range of the GPP samples and almost as curvy as the GPP samples.

3.2 Experiments with rbf hyperbolic tan activations

k(x, x′) = e−(x−x
′)2/2

a(x) = e−x
2

(a)

k(x, x′) = e−(x−x
′)2/50

a(x) = tanhx

(b)

Figure 3: In (a) and (b) we map GP priors with a RBF kernel to BNNs with a RBF and tanh activation
functions It is clear that the optimized samples have taken on the curveness of the GPP samples

4

3.3 Experiments with periodic kernels and activations

k(x, x′) = e−2 sin2(π|x−x′|)

a(x) = sinx

(a)

k(x, x′) = e−2 sin2(π|x−x′|)/25

a(x) = sinx

(b)

Figure 4: In (a) and (b) we map GPPs with periodic kernels to BNNs with sin activation functions.
The periodic structure of the GPP samples has been mapped to the optimized BNN samples.

3.4 Experiments with other kernels

k(x, x′) = (1 + (x− x′)2/6)−3

a(x) = e−x
2

(a)

k(x, x′) = e−2 sin2(π|x−x′|)/25e−(x−x
′)2/2

a(x) = sinx

(b)

Figure 5: In (a) we map a GPP with a rational cubic kernel to a BNN prior, the optimized samples
have taken on the ”wigglyness” of the prior samples especially away from the origin (the middle). In
(b) we map a GPP with a locally periodic kernel to a BNN prior, the optimized samples take on both
the ”local wigglyness” and the periodicity of the functions from the GPP

4 Inference using the optimized prior

Next we use the optimized parameters φ∗ found by minimizing the kl of the pBNN(f |φ) to pGP(f) in
a prior on the weights p(w|φ∗) = N (w|µ∗φ,σ∗φ). when maximizing the ELBO LD(ϕ) ≤ log p(D).

LD(ϕ) = H[q(w|ϕ)] + Eq(w|ϕ) [log p(D|w) + log p(w|φ∗)] (10)

Where D = {y,X} is the training data, ϕ = {µϕ, logσϕ} are the variational parameters of the
approximation q(w|ϕ) = N (w|µϕ,σϕ) to the true posterior on the weights p(w|D). Which we
can sample from using reparameterization trick [6, 7] w(`) = t(ϕ, ε) = µϕ + σϕε

(`). Thus we can
obtain unbiased stochastic gradients of the ELBO with respect to the variational parameters.

5

4.1 Experiments on toy data

We test our model (blue) on 2 different toy problems. We work directly in function space and use
algorithm one, and we found that no entropy term estimate was necessary for reasonable results.
We compare to a BNN (blue) using a standard normal prior distribution on the weights and to the
posterior of a Gaussian process (green). The BNNs are trained using Bayes by Backprop [8]. For
both Gaussian process priors, the kernel is the RBF covariance function. The observations y are
sampled by passing some data sampled uniformly through a function f(x) and adding some Gaussian
noise ε ∼ N (0, σ2). We use σ = 1. The networks are all 2 layer with rbf activations as well. In the
following plots the previous color scheme also applies

f(X) ∼ pGP(f |D), f(X) ∼ pBNN(f(X)|ϕ∗,φ∗), f(X) ∼ pBNN(f(X)|ϕ∗)

f(x) = x sinx/10 f(x) = e−x
2/2

Figure 6: Plots of the 3 posteriors for 2 different functions. Different shades of color correspond
to deciles of the predictive density p(f(xi)). The samples from this density are a slightly different
shade of green, red, and blue. The darkest is the mean. Notice that the mean and uncertainty bands
of the posterior trained with the optimized prior closer resembles the uncertainty of the Gaussian
process. This demonstrates that our method of approximating a GP prior via a BNN can successfully
transfer characteristics of the GP posterior to the BNN posterior as well.

6

5 Limitations

In the previous sections we demonstrate the success of our proposed objective in completing the set
out task of mapping the properties of a Gaussian process prior to a Bayesian neural network prior.
However, there remain significant limitations of our method. We describe them below.

We found that we could not map GP priors to BNNs with certain activation functions, for example
we could only map a GP prior with a linear kernel to a BNN with Relu activation functions at any
capacity. In this case, the BNN could not, at any capacity, learn the smoothness or periodic properties
of any more interesting GP prior.

As well, we could not map the properties of a GP prior with a periodic kernel to a BNN that did not
have a periodic activation function. Our experiments focused on mapping properties of GP priors to
BNNs with configurations that could reasonably learn those properties, for example periodic kernels
to BNN priors with periodic activation functions.

We did not find an accurate estimator of the entropy term in our objective, as a result, training BNN
priors to behave like GP priors was difficult and was negatively hampered by lack of a accurate
regularization term. Furthermore, rough estimates of the entropy term did not stabilize or improve
these difficulties. Also, working in observation space with a more accurate estimation of the entropy
term introduced another set of difficulties brought on by the mini max objective. As a consequence,
we found that ignoring the entropy term and performing early stopping worked best.

Figure 7: An example of extreme overtraining

Often, without the entropy term, sam-
ples from the optimized BNN prior
would take on the properties of the
GP prior then gradually flatten and
lose the desired properties. On the
other hand, with the entropy term the
samples would sometimes blow up.
There was no stable regime where we
could obtain consistent convergence.
This would sometimes result in op-
timized samples which over empha-
size the characteristics of the GP prior.
An interesting example of this is dis-
played in Figure 7 where the red op-
timized samples take on an extremely
local periodic behaviour later in train-
ing, while the samples of the GP prior
being mapped do not have such a ex-
treme periodic behavior.

6 Conclusions and Future Work

In this work, we formulate a method for mapping a Gaussian process prior to a Bayesian neural
network prior. This is done in effort to transfer interesting properties of functions sampled from
a GP prior to functions sampled from a Bayesian neural network prior. In this regard, we can
implicitly think about priors in BNNs in function space rather than parameter space and overcome the
limits that this entails. We demonstrate our method on a variety of kernels and activation functions,
and gage its impact on posterior inference in simple toy examples. All together, while there are
important described limitations we establish that our method works throughout these demonstrations
and examples.

This work attempts to build a small bridge between the flexible models of Bayesian non parametrics
and the more scalable models of Bayesian deep learning. In future we seek to continue to build upon
this idea of specifying priors in function space. The goal is to building more expressive Bayesian
models where the prior better captures necessary prior beliefs and is more useful for posterior
inference.

7

Acknowledgements

The authors would like to thank Brian Ning and Guodong Zhang for helpful comments.

References

[1] Soumya Ghosh and Finale Doshi-Velez. Model selection in bayesian neural networks via
horseshoe priors. In Neural Information Processing Systems, 2016.

[2] Rajesh Ranganath, Dustin Tran, and David M. Blei. Hierarchical variational models. International
Conference on Machine Learning, 2016.

[3] Dougal Maclaurin, David Duvenaud, Matthew Johnson, and Ryan P. Adams. Autograd: Reverse-
mode differentiation of native python. 2015.

[4] David Duvenaud and Ryan P. Adams. Black-box stochastic variational inference in five lines of
python. NIPS Workshop on Black-box Learning and Inference, 2015.

[5] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. International Conference
on Learning Representations, 2015.

[6] D. P Kingma and M. Welling. Auto-Encoding Variational Bayes. International Conference on
Learning Representations, 2014.

[7] Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. International Conference on Machine Learning,
2014.

[8] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. International Conference on Machine Learning, 2015.

8

	Introduction and Motivation
	Mapping a GP prior to BNN prior
	Estimate of entropy term using moment matching
	Estimate of entropy term by projecting into observation space
	Early Stopping

	Experiments with different kernels and activation functions
	Linear and Softplus Experiments
	Experiments with rbf hyperbolic tan activations
	Experiments with periodic kernels and activations
	Experiments with other kernels

	Inference using the optimized prior
	Experiments on toy data

	Limitations
	Conclusions and Future Work

